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Abstract 

The structure o f  the  space o f  wave func t ions  in the  representat ion given by a complete  
everywhere independent  set of  c o m m u t i n g  observables is analyzed in the  f ramework  o f  
geometr ic  quant izat ion.  Under the  assumpt ions  that  the  chosen real polarizat ion o f  the  
classical phase space is locaUy trivial and complete,  it  is shown tha t  the  wave funct ions  are 
generalized sections o f  an  appropriate  line bundle  with supports  de termined bygeneral ized 
BohroSommerfeld  condit ions.  There is a canonical Hitbert subspace o f  t he  space o f  the  
wave func t ions  with the  scalar product  defined in te rms  of  the  same expressions which 
appear in the  generalized Bohr -Sommerfe ld  condit ions.  

1. Introduction 

In the abstract formulation of quantum mechanics, states are elements of  an 
abstract Hitbert space. A choice of  a complete system of commuting observables 
yields a representation of  states by wave functions. Knowledge of the classical 
counterparts of  the observables forming the complete commuting system enables 
one to interpret the wave functions from the point of view of  the classical phase 
space. However, in the process of quantization of a classical system the situation 
is reversed. One has only the classical phase space to begin with, and one has to 
choose a maximal set of commuting functions on the phase space to define wave 
functions and their scalar products. The standard quantization procedure is 
possible if  the classical system has a distinguished configuration space with a 
Euclidean structure. Then, one uses Cartesian coordinates of the configuration 
space as the complete set of  commuting observables, and the wave functions 
form the space of square integrable complex functions on the configuration 
space. In the case where there is no Euclidean structure on the configuration 
space the quantization procedure is more difficult and the geometric nature of  
wave functions is more complicated. If  some of the observables in the complete 
commuting set have discrete spectra, the wave functions are in fact generalized 
functions (distributions) on the phase space and one has to be very careful in 
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defining their scalar product, since multiplication of generalized functions is 
usually not possible. 

The aim of  this paper is to analyze the space of wave functions in the repre- 
sentation given by a complete everywhere independent set of  commuting 
observables without imposing any additional structure on the classical phase 
space. It is done here in the framework of geometric quantization theory in- 
troduced by Kostant (1970), and developed and applied to problems in group 
representation and quantum mechanics by several authors (cf. Auslander & 
Kostant, 1971 ; Blattner, 1973, 1974; Kostant, 1973, 1974; Gawedzki, 1974; 
Rawnsley, 1974; Simms, 1973, 1974a, b; Sniatycki, 1974, 1975). Some of the 
essential ideas in geometric quantizafion were developed independently by 
Souriau (1970). 

The phase space of a dynamical system with n degrees of freedom can be 
represented by a 2n-dimensional manifold X. The Lagrange bracket divided 
by the Planck's constant defines a symplectic form co on X. Dynamical variables 
are represented by functions on X. 

A symplectic manifold (X, w) is quantizable if w defines an integral de Rham 
cohomology class. In this case there exists a complex line bundle L with con- 
nection V such that co is the curvature form of V, and an invariant Hermitian 
form. Given such a line bundle, one can associate to each function on X a linear 
operator on the space of sections of L in such a way that the Poisson bracket 
of two functions is associated to the commutator of the corresponding operators, 
divided by /h ,  where ~ is the Planck's constant divided by 2n, see Kostant (1970). 
In order to obtain physically meaningful quantization one has to choose a com- 
plete system of commuting observables. Since one has no Hilbert space of 
states, one does not know a priori which functions on X will qualify as observ- 
ables. A globalized classical counterpart of  the notion of a complete set of  
everywhere independent observables is that of a real polarization of a symplectic 
manifold. A real polarization of (X, co) is a foliation F of X by Lagrangian sub- 
manifolds, that is by n-dimensional submanifolds Q of X, called leaves of  the 
foliation, such that co restricted to Q vanishes identically. The sections of  L 
covariant constant along F are possible candidates for wave functions. How- 
ever, there is no natural way to define a scalar product for such sections, since 
there is no canonical density in the space of all leaves of the foliation F. This 
is one of the reasons for the necessity for introducing a bundle A rt of half-forms 
relative to F and defining the wave functions to be the sections of L®N¢ co- 
variant constant along F. Such smooth sections exist only if the leaves o f F  are 
simply connected. A complete study of this case is given in Blattner (1973). 
Sections of  L ® N ¢  can be treated also as generalized sections of  a brindle 
L®N, where N is the Hermitian dual o fN¢.  Therefore, wave functions can be 
represented by generalized sections of L ® N  covariant constant along F. This 
interpretation of the wave functions can be used also in the case when the 
leaves of  F are not simply connected. Throughout this paper we assume some 
topological conditions on the allowable polarizations, namely local triviality 
and completeness, which imply that leaves of Fare  diffeomorphic to T k x 
R n-l¢, where T k denotes a k torus. It is shown that the space of generalized 
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sections of  L ® N? covariant constant along F has a canonically defined pre- 
I-filbert space H o. The completion H of H o is defined to be the Hilbert space 
of wave functions in the representation given by polarization F. Quantization 
of functions constant along F gives operators of multiplication by these func- 
tions, and the spectra of these operators are completely determined by the 
generalized Bohr-Sommerfeld conditions, cf. Sniatycki (1975). In order to 
quantize arbitrary functions one would have to generalize Blattner-Kostant- 
Sternberg kernels (Blattner, 1973, I974) to the case of  polarizations with not 
simply connected leaves. This problem will be studied separately. 

In the following, all manifolds are real, finite-dimensional, C% Hausdorff, 
and paracompact, and all functions, maps, etc. are C ~ (smooth) unless other- 
wise specified. Most of the results in differential geometry used in this paper 
can be found in Kobayashi & Nomizu (1963). 

2. Complete Locally Trivial Real Polarizations 

Let (X, co) be a symplectic manifold and dim X = 2n. A real polarization of 
(X, co) is an integrabte n-dimensional distribution F on X such that co restricted 
to vectors in F vanishes identically. For each point x E X there exists a unique 
integral manifold Qx of Fpassing through x such that co [Qx = 0. Therefore F 
defines a foliation of X by n-dimensional manifolds, called the leaves of the 
foliation. We shall use the same symbol F t o  denote the foliation defined by a 
real polarization F. Locally leaves of F can be characterized by n equations 
f l  = cons t , . . . ,  fn = const, where f l ,  • •., fn are independent functions defined 
on an open subset V of X. For each function f o n  X the Hamiltonian vector 
field ~f of  f is defined by ~f_Jco = df, where _] denotes the left-invariant product 
of  a form by a vector field, satisfying (~1 -lco)(~2) = co(~x, ~2) for any vector 
fields ~1, ~2- The Hamiltonian vector fields ~f~ . . . . .  ~fn ° f f l  . . . .  , fn  have values 
in F and therefore co(~fi, ~f.) = 0, for all i, j = 1 , . . . ,  n. This implies that the 

• ] , 

Polsson brackets of  the funcnons f l  . . . . .  fn are identically zero, since the 
Poisson bracket o f f / and  f] is proportional to w(~fi, ~f.). Hence, the notion of 

. . . .  ] 

a real polanzaUon ~s a gtobalization of the notion of  a complete set of  every- 
where commuting functions. 

Definition 2.1. A real polarization F of a symplectic manifold (X, co) is 
locally trivial if the set Y of all leaves of F has a manifold structure such that 
the canonical projection ~7: X-+ Y, assigning to each x E X the leaf o f F  con- 
taining x, is a locally trivial fibration. 

Let F be a locally trivial real polarization of  (X, co) and U a coordinate 
neighborhood in Y with coordinate functions g 1 . . . .  , gn. For each i = 1 , . . . ,  
n, we denote by ~i the Hamiltonian vector field o f f i  =gi o ~ on ~- I (U)  c X. 
The Hamiltonian vector fields ~1 . . . . .  ~n commute and span F t ~-I(U).  There- 
fore, for each leaf Q of F contained in ~-1 (C0, the restrictions of  ~ 1 . . . . .  ~n 
to Q, denoted by ~1 [ Q . . . . .  ~n I Q, commute and span TQ. This defines an 
absolute parallelism in Q. A vector field on {2 is parallel if its componentswith 
respect to the basis (~1 I Q . . . . .  ~n I Q) are constant. The absolute parallelism 
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defined in this way in Q is independent of the choice of Hamiltonian vector 
fields spanning F. This is a special case of the results of  Weinstein (1971). 

Definition 2.2. A locally trivial polarization F is complete if, for each leaf 
Q of F, every parallel vector field on Q is complete. 

Examples of locally trivial real polarizations are furnished by the SchrSdinger 
representation, in which X is identified with the cotangent bundle space T* Y 
of the configuration manifold Y, and by quantization of a one-dimensional 
harmonic oscillator in the representation in which the Halniltonian is diagonal 
(Simms, 1973). Moreover, it has been shown by Rawnsley (unpublished) that 
quantization of a one-dimensional harmonic oscillator in the polarization given 
by rays starting at the origin gives the wrong energy spectrum; this polarization 
is not complete. The condition that a locally trivial real polarization should be 
complete is related to the Pukansky condition in Auslander and Kostant (1971). 

A Euclidean cylinder is the quotient space o f R  n by a properly discontinuous 
subgroup G of R n generated by a set (u 1, • •., uk) of linearly independent 
vectors in R n. The canonical metric in R n induces in Rn/G a flat Riemannian 
metric. 

Lemma 2.1. Each leaf of a complete locally trivial real polarization is 
diffeomorphic to a Euclidean cylinder. 

Proof  The proof is based on results in Auslander & Markus (1955) and 
Kobayashi & Nomizu (1963, Chap. V). Each leaf Q of a complete locally trivial 
polarization has a complete flat affine connection defined by absolute parallelism. 
Hence the universal covering space of Q is isomorphic to R n . Introducing a 
Riemannian metric in Q such that the basic parallel vector fields ~1 [Q, • • ", ~n LQ 
are orthonormal, and choosing a base point x C Q, induces in Q a structure of 
an Abelian group with an invariant flat metric such that the covering map R n 
Q isa group homomorphism. Hence, Q ~ R n / G ,  where G is a subgroup o f R  n 
generated by k ~<n linearly independent vectors in R n . 

Lemma 2.2. Let F be a complete locally trivial real polarization of 
(X, w) and Rn/G a Euclidean cylinder diffeomorphic to a typical leaf 
ofF .  For each y E Y, there exist a neighborhood U o f y  and a trivial- 
ization ~o: r/- 1 (U) ~ U x R n/G such that, for each leaf Q of F contained 
in */-1 (U), the induced diffeomorphism ~oQ: Q ~ Rn/G is an isomorphism 
of manifolds with absolute parallelism. 

Proof Let U be a coordinate neighborhood o f y  in Y such that 7-1 (U) is 
trivial and ~1 . . . . .  in the Hamiltonian vector fields on ~ - l ( U )  defined by the 
coordinate functions on U. Since r/-1 (U) is trivial there exists a section s: U-~ 
X of r/. For each leaf Q in r~-I (U), the section s defines a base point in Q. 
Introducing in Q a flat Riemannian metric such that ~ 1 [Q . . . .  , ~niQ are ortho- 
normal vector fields defines in Q a structure of an Abelian group and an iso- 
morphism of  Lie groups ~Q: Q ~ Rn/G. The isomorphism ~Q maps the vector 
fields ~1 tQ . . . . .  ~n [Q to the parallel vector fields o n R n / G  defined by the co- 
ordinate directions in R n . Hence, CQ is an isomorphism of manifolds with 
absolute parallelism. Moreover, the isomorphism CQ is uniquely determined 
by the base point s(U) Y~ Q and the restriction to Q of the vector fields ~1 . . . . .  
~n. Therefore, the map ¢: ~-I(U) ~ U x R n / G  given by ~(x) = (V(x), ~Q(x)), 
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where Q is the integral manifold o f F  through x, is well defined, and it is a 
smooth trivialization satisfying the conditions of the Lemma. 

The fundamental group of a Euclidean cylinder Rn/G is isomorphic to G, 
which is a free Abetian group of rank k <~ n. Therefore, for each leaf Q o f F  
and each x E Q, the fundamental group of Q with base point x is a free Abelian 
group of rank k. For any x, x '  E Q, there is a natural isomorphism of funda- 
mental groups of Q with base points x and x ' ,  respectively. We shall use these 
isomorphisms to identify fundamental groups of Q with different base points 
and denote by zr I(Q) the fundamental group of Q obtained by this identification. 
For any diffeomorphism ~oQ: Q -+ Rn/G the induced isomorphism of the funda- 
mental groups will be denoted by ~0Q, : zq(Q) -+ G. 

Theorem 2.1. Let ~0:~-1 (U) ~Rn/G be a trivialization o f ~  satisfying 
the conditions of Lemma 2.2. For each u E G, there exists a vec- 
tor field ~u in F/rUI(U) such that, for each x E r / - l (U) ,  the inte- 
gral curve e : [0, 1 ] -+ X of fu originating at x is a closed loop in the leaf 
Q of F passing through x representing the element ~0~, (u) in rr i (Q). 
The collection of local vector fields on X defined in this way spans an 
involutive distribution K contained in F of dimension k equal to the 
rank of  the fundamental group of a typical integrN manifold of  F. 
There is a canonically defined density K on K. 

Proof Let ~u be a vector field on UxRn/G defined by ~u(Y,P) = (0, u) for 
each (y, p) ~ U x Rn/G. For anyintegral curve c: [0, 1 ] ~ U x R n/G of ~u, the 
projection of c to Uis a constant curve in U while the projection of c to R n/G 
is a closed curve representing the element u of  the fundamental group of R n/G. 
Since ~: 4 - I (U)  -+ U x Rn/G is a diffeomorphism such that, for each leaf Q 
of F i n  ~-I(U) ,  it induces an isomorphism ~O~o" Q -+ Rn/G of manifolds with 
absolute parallelism, the vector field fu on @I(U),  defined by fu(X) = 
T~ -1 (~u(~P(x))) satisfies the conditions of the Theorem. Further, the vector 
fields ~'u,, . . . .  fuk corresponding to the generators of G span a k-dimensional 
involutive distribution on ~- I (U)  contained in F[~-I (U) .  A different choice 
of trivializations of  r/-a (U) satisfying the conditions of  Lemma 2.2 leads to 

r t . . . . .  1 another k-tupte (fu~ . . . .  , fuk) of linearly independent vector fields m F[~ (U) 
which differs from (~'u~, • • .;-lug) by multiplication by a matrix with determi- 
nant +t.  Therefore, local vector fields corresponding in this way to elements of  
G define a k-dimensional involutive distribution K on X contained in F, and a 
density K on K. 

3. Complex Line Bundle 

Let L denote a complex line bundle over X with a connection V such that co 
is the curvature form of V, and an invariant Hermitian form ( ] ). Such a line 
bundle exists if and only if co defines an integral de Rham cohomology class; 
for a detailed exposition of the theory of complex line bundles see Kostant 
(1970). We denote by L .  the bundle L minus the zero section. It is a principal 
fiber bundle over X with the multiplicative group C,  of  nonzero complex  
numbers as the structure group. The line bundle L is a fiber bundle associated 
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to L ,  with a typical fiber C on which (7, acts by multiplication. The connection 
V in L corresponds to the horizontal distribution in L , .  Any piecewise smooth 
curve in X can be lifted to a horizontal curve in L . .  Any loop c: [0, 1 ] --> X 
defines a unique complex number aL(C ) E C. such that, for each horizontal 
lift ~: [0, 1] -+L .  of  c, ~(1) = aL(c)~(O ). The function a L from the space ofaU 
loops in X to C.  is called the scalar parallel transport function of the connection 
in L . .  It satisfies the following conditions: 

1. laL(C)l = 1 for each loop c in X. 
2. I f c  1 is homotopic to c 2 and ~ is a surface of deformation o fc  1 to 

c2, then 

3. If  c1(1) = c2(0), then aL(C 1 "C2) = aL(Cl)aL(C2), where cl "c2(t) = 
c t (2t) for 0 ~< t ~< ½ and c t "c2(t) = c2(2t - t )  for ½ ~< t ~< 1. 

Let Q be a leaf of F. Since co }Q = 0, L ,  [Q has a flat connection, and the 
restriction of aL to loops in Q depends only on the homotopy classes of loops 
in Q. This defines a homomorphism a L {Q: 7rl (Q) ~ C.  from the fundamental 
group of Q to the group 6'.. 

4. Metalinear Structures 

Let BF denote the bundle of  ordered bases of F. It is a GL(n, R) principal 
fiber bundle over X. Let ML(n, C) denote the double covering of GL(n, 6"). 
Since GL(n, R) is a subgroup of GL(n, C) the .inverse image of GL(n, R) under 
the covering map ~: ML(n, 6*) -+ GL(n, C) is a subgroup ML(n, R) of ML(n, C) 
called the real n x n metalinear group. 

Let ~: ML(n, C) -+ C be the unique holomorphic square root of the complex 
character Det o ~ of ML(n, C) such that 2(1) = 1. We shall denote by p: ML(n, R )  
-+ GL(n, R) the map induced by the covering map/3, and by X: ML(n, R) -+ C 
the restriction o f ~  to ML(n, R). A metalinear frame bundle for F is a principal 
ML(n, R) fiber bundle/~F over X together with a map r: BF ->BF such that 
the following diagram commutes: 

BF xML(n,R)  , BF 

l~xp lp 
BF x GL(n,R) ---+ BF 

where the horizontal arrows denote the group actions. Fo r each leaf Q o f F, 
the restrictions of/}F and BF to Q are principal fiber bundles with canonically 
defined flat connections (Sniatycki, 1975). 

Let N be the fiber bundle over X associated to/~F with standard fiber C on 
which ML(n, R) acts by multiplication by x(a). For each co E X, an element 
Px ENx is a map from/~F x to Csuch that vx(ba) = ×(a)vx(b), for all b CBF~ 
and a EML(n, R). The Hermitian dual o f N i s  a fiber bundle NT over Xassocia- 
ted to/~F with standard fiber C on which ML(n, R) acts by multiplication by 
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)~(a) - t  . For each/2x E Ntx, b E BFx, and a E ML(n,R), Vx(b ) = ?l(a)/2x(ba). 
The bundle N t is called a bundle of half-forms relative to F. For each x E X, 
there is a sesqulinear map (-1" ): Nx t x Nx -~ C such that (Vx l vx ) =/2x(b)vx(b) 
for any b E ~Fx. 

For each integral manifold Q of F the restriction of BF to Q has a canonically 
defined flat connection. This defines flat connections in N ? [Q and N[ Q. There- 
fore, we can differentiate covariantly sections of  N ? or N in direction of vector 
fields in F. This covariant differentiation in direction o f vector fields in F satisfies 
all the rules of  genuine covariant differentiation. For any section/2 of N ? and 
v of  N and any vector field ~ in F, we have ~((/21v)) = (V~/21v) + (/21V~v). 

Since, for each leaf Q of F, the connection in NI Q is flat, the parallel trans- 
part in N t Q defines a homomorphism aN i Q: rra (Q) -+ C,. 

Lemma 4.1. For each leaf Q of a complete locally trivial real polarization 
F, aN[ Q(/r 1 (Q)) C ( 1, - 1 }. For any trivialization ~0:~-1 (U) -+ U x 
Rn/G of ~ and any u E G, aNi Q(~?I, (u)) is independent of  Q in ~7-1 (59. 

Proof. Since BFIQ is a trivial bundle, there is a subbundte BrF[ (2 of BFt Q 
such that the inclusion map BrFI (2 -> BFI Q gives a reduction of ML(n, R) to the 
kernel of  the covering map p: ML(n, R) -+ GL(n, R). Moreover, the connection 
in/~F[ Q reduces to a connection in ~rFIQ. Hence, the holonomy groups of 
[IFI Q and BrFIQ coincide and they are subgroups of Ker p. Parallel transport 
in N I (2 defines a subgroup aN i Q(~rl (Q)) o f C,  homomorphic to a subgroup of 
Ker p. Since p is a double covering, Ker p is isomorphic to Z 2 (the additive 
group of integers modulo 2), and therefore, aNi Q(Zrl(Q) ) C { 1, -1  }. 

For any trivialization ~0: ~?-I(U) -> U x Rn/G and any u E G, the map g: U-+ 
{1, - t  } defined by g(y) = aNi Q ( ~ l ( u ) ) ,  where Q = r/-1 (y) is continuous. 
Therefore g is constant, which proves the second part of the Lemma. 

Similarly, for each leaf Q o fF ,  the connection in N~ I Q is flat, the parallel 
transport in N~ IQ defines a homomorphism from zr I(Q) to C,,  and the image 
of  this homomorphism is contained in ( 1, -1  }. Since, for each a E Ker p, 
?((a) = ?((a) -1 , it follows that the homomorphism from zrl(Q) to C,  induced by 
parallel transport in N~ I Q is the same as the homomorphism a~v I Q induced by 
the parallel transport in N] Q. 

5. Wave Functions 

The connectionV in the line bundle L and covariant differentiation of 
sections of N in direction of  vector fields in F give rise to covariant differen- 
tiation of sections of L ® N  in direction of vector fields in F. For each section 
X of L and each section u of N, X®v is a section of L ® N a n d  V~(X®p) = 
(V~X) ®v + X®V~v for all vector fields ~ in F. Let D(L®N) denote the space 
of C °o sections of  L ® N  with compact supports, endowed with the standard 
topology, and D'(L®N) the space of continuous linear functionals on D(L®N). 
Elements of D'(L®N) are called generalized sections of  L ® N q .  The value of a 
generalized section ~ on a section a ED(L®N) is denoted by ( ~, o). For each 
generalized section ~ of L®N? and each vector field ~ in F, the covariant derivative 
of ~ in direction ~ is a generalized s ec t i onV~  of L ® N t  defined by ( V ~ ,  o) = 
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-- (~,V~a),  for all aED(L(~N) .  A generalized section ~ of L ® N ?  is covariant 
constant along Fif ,  for each Hamiltonian vector field ~ in F , V ~  = 0. Generalized 
sections o f L ® N  ? covariant constant along F represent the quantum states of 
the physical system described by the classical phase space (X, ~o), and they are 
called wave functions of the system in the representation given bythe polariza- 
tion F. 

For each integral manifold Q of F the restriction of L ® N  to Q has a fiat 
connection induced by the fiat connection in L [Q and the canonical fiat con- 
nection in NIQ. The parallel transport of elements of L ® N  along loops in Q 
defines a homomorphism %!: ~'I (Q) ~ C. such that, for each 3' @ ~I(Q), aQ(7) = 

Theorem 5.1. I f F  is a complete locally trivial real polarization, then: 
1. The supports of generalized sections of L ® N ?  covafiant constant 

along Fare  contained in the subset S of X consisting of  all leaves 
Q of F for which the homomorphism aQ: r~ 1 (Q) ~ C, is trivial. 

2. The projection Z of S to Y, Z = ~(S), is a submanifold of Yof  
codirnension k equal to the rank of  the fundamental group of a 
typical integral manifold of F. 

3. S is a submanifold of  X of codimension k, the characteristic distri- 
bution of co IS coincides with the restriction to S of the distribution 
K defined in Theorem 2.1, that is 

KtS  = (v E TS Iv_Aa~IS = O} 

and there is a canonically defined density 6 on S. For any Hamil- 
tonian vector field ~ in F, the restriction of ~ to S leaves 6 invariant. 

Proof. 1. Let Qo be a leaf of F such that aQ, is not trivial. This means that 
there exists 7 E zr 1 (Q0) satisfying aQ0 (7) 4= 1. By Theorem 2.1 there exists an 
open neighborhood ~/-1 (U) of Qo and a vector field ~ on ~-1 (U) such that alt 
integral curves c: [0, 1] -+ ~/-1 (U) of ~" are closed, and the homotopy class 
[%] of any integral curve c : [0, 1] -> Qo of ~- is equal to % Without loss of 
generality we may assume that aQ([C] ) 4= 1 for all Q in ~/-1 (U) and all inte- 
gral curves c: [0, I ] ~ Q of ~'. 

Let ¢ be a generalized section of L ® N t  covariant constant along F. We want 
to show that ~-I(U) r3 support ~ = 0. Let a be any smooth section of L ® N  
with support contained in 7/-1 (U). For each t E [0, 1], we denote by a t the 
section of L ® N  obtained from a by the parallel transport along the integral 
curves of ~', corresponding to the change of the parameters on these curves by 
the amount t. Since ~ is covariant constant along F and ~ is in F, 

0 = <V¢~, at> = -<~, Vfot> = - (d /dO < ~, or> 

Hence, (~, a t) is independent of t, and (~0, 01 ) = (~, %>. However, for each 
x E 71-1 (U), o 1 (x) = aQx([ex] )Oo(X ), where Qx is the leaf of F through x and 
ex: [0, 1 ] ~ Qx is the integral curve of ~" originating at x. The function f: 
~/-1 (U) -+ C, defined by f(x) = aQ ( [Cx ] ) is smooth and f(x) :/= 1 for all x E 
r/-a (U). Therefore, for each smoot~a section a of L ® N  with support in 7 -1 (U), 
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we have (¢ ,  ( f -  1)o) = 0, which implies that (~/, o) = 0 for all smooth sections 
o of  L ® N w i t h  supports in ~/-1 (U). Hence, support ff :3 7/-1 (U) = 0 which 
implies that support ff is contained in the subset S of  X consisting of  all leaves 
Q o f F  for which aQ is trivial. 

2. Let ~0: r/-1 (U) -> U x Rn/G be a trivialization of  ~/satisfying the conditions 
of  Lemma 2.2 ul  . . . . .  uk the generators of  G, and ~'ut . . . . .  fu/¢ the corre- 
sponding vector fields on ~ - I ( U )  defined in Theorem 2.1. For e a c h / =  
1 . . . .  , k, )}: 7/-1(U) -> C ,  is a differentiable function o f  modulus 1 defined by 
~(x) = aQx([ejx]), where Qx is the leaf of F th rough  x and c/x: [0, 1] -> Qx is 
the integral curve of  fuj originating at x. Each of  the functions J) factors through 
the projection ~,j~ =gj o r/, where gj: U-+ C.  are smooth and Igi[ = 1, for all 
j = 1 . . . . .  k. The set Z A Uis characterized by the conditionsgi(y) = 1 for all 
/ = 1 . . . . .  k and a l ly  E Z  :3 U. It suffices to show that the functions g 1 . . . . .  
gx are independent in Uor ,  equivalently, that the functions f l  . . . . .  fk  are 
independent. Let c: [0, r] --> U, r > 0, be a smooth curve in U. For each loop 
cjx, where ~(x) = c(0), we have a homotopy h]: [0, r] x [0, 1] -+ ~1-1 (U) 
defined by hi(s, t) = ~o -1 (c(s), pr z o qo o e]x(t)) joining the loop Cix to the loop 
C)'x' where x' = ~1-1 (c(r), pr 2 o ~o(x)). Therefore, we have 

gj(c(r)) -- g](c(O)) = aQx, ( [C/x, ] ) - O~Qx ([ejx ] ) 

= C~NIex,([%,] )o~L lex,([c/x'] ) -- ~u ~Q~([c/A )~/~ LQ~([%] ) 

= ~ : , - I Q ~ ( [ e / A ) [ ~ L ) e ~ , ( [ c / ~ ' ] )  - ~L  ~Q~([C/x])] 

=~NlQx([C)~l)exp(-2~i f @ 
l"mh/ 

[ ; '  ] = aNIQx([C/x]) exp --27ri ds f dth/*(co)((1,0), (0, 1)) 
o o 

Hence, 

d 1 

-~ g] o c(r) [r=O = -2rri f dthi*(coX(1, 0), (0, 1))aNiQx([C/x] ) 
o 

= - 27rico(v, fuj(X)) aN IQ x ([Cjx ] ) 

where v is any vector in TxX projecting to the tangent vector to c at c(0). 
Therefore, fUl(X)ACo = {2rriaNI (?x ( [% ] ) } -1 dr/, for each ] = 1 . . . . .  k. 

Since the vector fields ~'ul, " •., ~'uk are independent and co is nonsingular, it 
follows that the functions f l  . . . . .  fk are independent. This implies that Z is a 
submanifold of  Y of  codimension k. 

3. Since S = ~- t (Z) ,  it is clearly a submanifold o f  X of  codimension k. 
Therefore, the characteristic distribution of  co IS is at most k-dimensional. For 
each / = 1 . . . . .  k, )~(x) = 1 for all x E S. Hence, v(f/) = 0 for all v E TxS, which 
implies that (~'u._] co)kS = 0. Therefore, the distribution K tS f3 7 -1 (U) spanned 
by ~'ul iS, • •.,  ~ue IS is contained in the characteristic distribution of  ~ iS. But 
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dim K IS = k, and so K iS coincides with the characteristic distribution of  w IS. 
Finally, let Vbe  an open subset of.2-1 (U) and ~1 . . . .  , ~n-~, ~1 . . . . .  ~n-k 
Hamiltonian vector fields on V such that (~u~ . . . .  , ~ ,  ~1 . . . .  , ~n-k) spans 
FI V, (~'u,, . . . .  ~'uk, ~1, - •., ~k, ~1 . . . .  , ~k) tS spans T(S A 10, and ¢o(~ r, L )  = 
~rs and ¢o(~ s, ~'u -) = 0 for r, s = 1 . . . . .  n - k, j = 1 , . . . ,  k. The density ~ is the 
unique density wJhich associates to the frame field (~u, . . . . .  ~'u k, ~1 . . . . .  ~k, 
~ 1 , . .  -, ~k)iS in S number 1. This condition defines 6 since any other flame 
in T(S N 11) satisfying the same condition is related to the f rame  above by a 
matrix 

A = A22 A23 ~ ~ GL(2n - k, R) 

0 A33/ 

where IDet A l l l  = 1, andA22A3T3 = 1. Therefore IDet A I = I D e t A l l l "  IDetA221" 
tDet A331 = 1. Further, the frame field (~'u~, • . . ,  ~'uk" ~1, - . . ,  ~n-k, ~'~ . . . . .  ~n-k) 
is left invariant by any Hamiltonian vector field ~ on Vwith  values in F. Therefore 
the density ~ is left invariant by~ IS. 

6. Scalar Product 

Let H o be the space of  sections ~ of (L®Nt)IS such that, for eachleaf  Q of  
F contained in S, ~ [Q is covariant constant, and the projection to Z of  the 
support o f  ff is compact.  

Proposition 6.1. 
1. dim H o > 0. 
2. There is a canonical inclusion o f H  o into D'(L®N) such that 

elements of  Ho are generalized sections of L @ N t  covariant constant 
along F. 

3. There is a canonically defined pre-Hilbert structure ( '1") in H o. 
Proof. 1. Since 7: X--> Yis locally trivial, there exists a local section s: U-> 

X of  .2 such that U is contractible and U ¢q Z :/= 0. Then, s(U) is contractible and 
there exists a nowhere vanishing section g of  (L®Nt)Is(U). Let Os be the 
section of  (L®Nt) iS  over *2 -1 (U A Z) obtained from g by  parallel transport 
along leaves of  F contained in r/-1 (U N Z). Let f b e  a smooth function on Z 
with a compact nonempty  support in U ¢q Z. Then, the local section x -->f(*2(x)) 
~s(x) defined over r / - I ( U ~  Z) extends to a global section ~/: S --> (L®Nt)IS, 
which is not identically zero and belongs to H o. Hence dim Ho > 0. 

2. For any ~k E H  o and any o ED(L®N) there is a complex function (~ la) 
oh S defined as follows. For each x E S, ~(x) = ),x ®/Ix and o(x) = X~c® vx, 
where XxX~c ELx, ~x ENtx and v x ENx. Then (~(x)la(x)) = (X't  Xx) (/~,lvx), 
where (Xx I Xx) is the Hermitian form in L evaluated on Xx and Xx, and (/a x [v x) 
is the value on (/~x, Px) o f  the sesqulinear map (" 1"): N~ x Nx -+ C defined in 
Sec. 4. Clearly, this definition of  (~(x) [ o(x)) is independent of  the tensor pro- 
duct decomposition of  O(x) and o(x). Further, for each vector field ~ in F, we 
have ~ (~  [o) = (~ [V~o). Each ¢ E H  o defines a map (~,  .): D(L ® N )  -+ Cgiven 
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by (t~, a) = f s  (~ I a) 5, where ~ is the density on S defined in Theorem 5.1. The 
map (~,  .) is linear and continuous, and (~,  o) = 0 for all a only if ~b = 0. There- 
fore, the association ~ ~ (~,  ")gives-an imbedding of  H o into D '(L ®N) .  
Moreover, for each Hamiltonian vector field ~ in F, 

5' S 

since ~ preserves 5 and o has compact support. Therefore, if we identify Ho 
with its image in D ' ( L ® N )  trader the map ~ ~ (~,  3,  each ¢ E H  o is a general- 
ized section of  L ® N ?  covariant constant along F. 

3. Let qJl and ¢2 be elements o f H  o. We shall define a density ~1 " ~2 on Z, 
dependening linearly on ~2 and antilinearly on qJ 1, and define the scalar pro- 
duct i n H o  by (~11~2) = f z ~ i "  ~ .  Lety  be any point in Z, and let (~t I . . . .  , 
wn-k) be a basis in TyZ. For any x E ~-1 (y) there exists a basis in TxX (Q1, 
. . . .  uk, vI, • •., Vn-k, wl ,  - •., Wn-k, t I , -  •., tk) in TxX such that ( ~  . . . . .  ug) 
is a basis in Kx, ~(u~ . . . . .  ~ )  = 1, (~a, . . ., ~ ,  v~, . . ., Vn_g) is a basis in Fx, 
Tn(wr) = v~r, co(fi b tj) = f/j, cO(Vr, Ws) = 6rs, co(5i, Ws) = o~(Vr, t/) = 0, for i, j = 1 . . . . .  k and r, s = 1 . . . .  , n-k. Let b ~ #Fx be such that r(b) = (Ul,.  •., 5k, Vl, 
. . . .  Vn_~). I f  ~l(X) =.Xlx®#1x_and ~ : ( x )  = Xzx®U:x, for some Xlx, X:x 
Lx a n d # i x ,  #2x £ N x  ~ ,,rv we put ~01 - ~2 (~ i  . . . . .  Wn-e) = (Xlx lXzx)# l~x#zx(b) -  
Clearly, this definition is independent o f  the choice of  b projecting to (ill . . . . .  
fix, vi ,  • •., Vn-k) and the tensor product decomposition o f  ~l(X) and ~: (x) .  
Any other basis in TxX satisfying the same conditions will be related to the 
one we have used by a matrix 

A l l  A12 A13 A 1 4 \  

li  A22 A23 A24~ 
A = 0 A33 A34]  E 

0 0 A44 / 

GL(2n, R) 

where [Det A ,  I [ = 1, A 11A if4 = 1 and A 22A T 3 = 1, and (~'I . . . .  , ~n-k)  = (~1, 
• . . ,  ~n-x)Aa3 is a new basis in TyZ. ThereFore, an element b' EBFx projecting 
onto the new basis in Fx will be related to b by a EML(n, R) such that 

(0  A l l  A12t@GL(n ,R  ) 
p(a) = A :21 

Hence 
. . . . .  =  2(G . . . .  , 

= (X1x l~k2x) #lx(b')#2x(b') 

= ()h.~ tX2x) #l~(ba)#2x(ba) 

= (Xlx IX2x) #1 (b)u2(b)[x(a)[ -2 

= (XtxlX2x) #t  (b)#2(b)l Det A 11" Det A221-1 

= ¢ 1" ~2(~q,  • •., f in-x)jDet  A331 
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and ~ 1 " ~ 2  transforms as a density under the change of  basis in TyZ.  Independence 
from x E ~?-l(y)  follows from the fact that  ¢ a and ~2 are covariant constant on 
~/-1 (y) .  Let x '  be any point in r t - l ( y )  and c: [0, 1] -+ ~ - l ( y )  a curve joining x 
to x ' .  Along c we can choose autoparalM sections XI, X2 of L a n d / a l ,  ~2 of  N ?  suct 
that Oi(c(t)) = Xi(c(t))® 12i(c(t)), i = 1 ,2 ,  t E [0, 1] ,  and a horizontal  lift O" of  c 
to BF. Then (Xl IX2) ~ / a 2 ( 6 )  is a constant function along c. Hence the defini- 
t ion o f  51" 42 is independent  o f x  in ~ - i  (y). The scalar product  (~1 [ ~)2) = 
f z  ~ 1 "~2 is thus well defined; and i t  clearly satisfies all the required properties. 

The completion H of  the pre-Hilbert space H 0 is the Hilbert space of  wave 
functions in the representation given by  polarization F .  
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