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Abstract

The structure of the space of wave functions in the representation given by a complete
everywhere independent set of commuting observables is analyzed in the framework of
geometric quantization. Under the assumptions that the chosen real polarization of the
classical phase space is locally trivial and compiete, it is shown that the wave functions are
generalized sections of an appropriate line bundle with supports determined by generalized
Bohr-Sommerfeld conditions. There is a canonical Hilbert subspace of the space of the
wave functions with the scalar product defined in terms of the same expressions which
appear in the generalized Bohr-Sommerfeld conditions.

1. Introduction

In the abstract formulation of quantum mechanics, states are elements of an
abstract Hilbert space. A choice of a complete system of commuting observables
yields a representation of states by wave functions. Knowledge of the classical
counterparts of the observables forming the complete commuting system enables
one to interpret the wave functions from the point of view of the classical phase
space. However, in the process of quantization of a classical system the situation
is reversed. One has only the classical phase space to begin with, and one has to
choose a maximal set of commuting functions on the phase space to define wave
functions and their scalar products. The standard quantization procedure is
possible if the classical system has a distinguished configuration space with a
Euclidean structure. Then, one uses Cartesian coordinates of the configuration
space as the complete set of commuting observables, and the wave functions
form the space of square integrable complex functions on the configuration
space. In the case where there is no Euclidean structure on the configuration
space the quantization procedure is more difficult and the geometric nature of
wave functions is more complicated. If some of the observables in the complete
commuting set have discrete spectra, the wave functions are in fact generalized
functions (distributions) on the phase space and one has to be very careful in
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278 7. §NIATYCKI

defining their scalar product, since multiplication of generalized functions is
usually not possible.

The aim of this paper is to analyze the space of wave functions in the repre-
sentation given by a complete everywhere independent set of commuting
observables without imposing any additional structure on the classical phase
space. It is done here in the framework of geometric quantization theory in-
troduced by Kostant (1970), and developed and applied to problems in group
representation and quantum mechanics by several authors (cf. Auslander &
Kostant, 1971 Blattner, 1973, 1974; Kostant, 1973, 1974; Gawedzki, 1974,
Rawnsley, 1974; Simms, 1973, 1974a, b; Sniatycki, 1974, 1975). Some of the
essential ideas in geometric quantization were developed independently by
Souriau (1970).

The phase space of a dynamical system with # degrees of freedom can be
represented by a 2n-dimensional manifold X. The Lagrange bracket divided
by the Planck’s constant defines a symplectic form w on X. Dynamical variables
are represented by functions on X.

A symplectic manifold (X, w) is quantizable if > defines an integral de Rham
cohomology class. In this case there exists a complex line bundle L with con-
nection V such that w is the curvature form of V, and an invariant Hermitian
form. Given such a line bundle, one can associate to each function on X a linear
operator on the space of sections of L in such a way that the Poisson bracket
of two functions is associated to the commutator of the corresponding operators,
divided by i1, where # is the Planck’s constant divided by 2n, see Kostant (1970).
In order to obtain physically meaningful quantization one has to choose a com-
plete system of commuting observables. Since one has no Hilbert space of
states, one does not know a priori which functions on X will qualify as observ-
ables. A globalized classical counterpart of the notion of a complete set of
everywhere independent observables is that of a real polarization of a symplectic
manifold. A real polarization of (X, w) is a foliation F of X by Lagrangian sub-
manifolds, that is by n-dimensional submanifolds Q of X, called leaves of the
foliation, such that w restricted to Q vanishes identically. The sections of L
covariant constant along F are possible candidates for wave functions. How-
ever, there is no natural way to define a scalar product for such sections, since
there is no canonical density in the space of all leaves of the foliation £, This
is one of the reasons for the necessity for introducing a bundle NT of half-forms
relative to F and defining the wave functions to be the sections of LQNT co-
variant constant along F. Such smooth sections exist only if the leaves of F'are
simply connected. A complete study of this case is given in Blattner (1973).
Sections of L&NT can be treated also as generalized sections of a bundle
L®N, where N is the Hermitian dual of NT. Therefore, wave functions can be
represented by generalized sections of L ® N covariant constant along F. This
interpretation of the wave functions can be used also in the case when the
leaves of F are not simply connected. Throughout this paper we assume some
topological conditions on the allowable polarizations, namely local triviality
and completeness, which imply that leaves of F are diffeomorphic to T% x
R"-¥ where T* denotes a k torus. It is shown that the space of generalized
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sections of L@ NT covariant constant along F has a canonically defined pre-
Hilbert space Hy,. The completion H of H is defined to be the Hilbert space
of wave functions in the representation given by polarization F. Quantization
of functions constant along F gives operators of multiplication by these func-
tions, and the spectra of these operators are completely determined by the
generalized Bohr-Sommerfeld conditions, cf. Sniatycki (1975). In order to
quantize arbitrary functions one would have to generalize Blattner-Kostant-
Sternberg kernels (Blattner, 1973, 1974) to the case of polarizations with not
simply connected leaves. This problem will be studied separately.

In the following, all manifolds are real, finite-dimensional, £, Hausdorff,
and paracompact, and all functions, maps, etc. are C~ (smooth) unless other-
wise specified. Most of the results in differential geometry used in this paper
can be found in Kobayashi & Nomizu (1963).

2. Complete Locally Trivial Real Polarizations

Let (X, w) be a symplectic manifold and dim X = 2n. A real polarization of
(X, w)is an integrable n-dimensional distribution F on X such that  restricted
to vectors in F vanishes identically. For each point x € X there exists a unique
integral manifold O, of F passing through x such that « |, = 0. Therefore F
defines a foliation of X by n-dimensional manifolds, called the leaves of the
foliation. We shail use the same symbol F to denote the foliation defined by a
real polarization F. Locally leaves of F can be characterized by n equations
f1 =const, ..., f, =const, where f, .. ., f,, are independent functions defined
on an open subset ¥V of X. For each function fon X the Hamiltonian vector
field £ of fis defined by £,_lw = df, where _| denotes the left-invariant product
of a form by a vector field, satisfying (£; 1w)(&;) = w(¥;, &,) for any vector
fields £y, £,. The Hamiltonian vector fields & 1 kg, of fy, ., [y have values
in Fand therefore co(&y,, éf) 0, foralli, j= , 7. This implies that the
Poisson brackets of the funttions fise-aka are 1dent1cal]y zero, since the
Poisson bracket of f; and f; is proportional to w(éf Ef) Hence, the notion of
a real polarization is a globalization of the notion ofa complete set of every-
where commuting functions.

Definition 2.1. A real polarization F of a symplectic manifold (X, w)is
locally trivial if the set Y of all leaves of F has a manifold structure such that
the canonical projection 7: X — Y, assigning to each x € X the leaf of F con-
taining x, is a locally trivial fibration.

Let Fbe a locally trivial real polarization of (X, w) and U a coordinate
neighborhood in Y with coordinate functions g,, ..., g,. Foreachi=1, ...,
n, we denote by &; the Hamiltonian vector field of f;=g; onon "1 (U) C X.
The Hamiltonian vector fields &, . . ., £, commute and span F|n~1(U). There-
fore, for each leaf Q of F contained in n 1 (U), the restrictions of £,, . . ., &,
to O, denoted by £, 10, . . ., £, | O, commute and span 7Q. This defines an
absolute paralielism in Q. A vector field on Q is parallel if its components with
respect to the basis (£, 10, . . ., &, 1 Q) are constant. The absolute parallelism
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defined in this way in @ is independent of the choice of Hamiltonian vector
fields spanning F. This is a special case of the results of Weinstein (1971).

Definition 2.2. Alocally trivial polarization F is complete if, for each leaf
Q of F, every parallel vector field on Q is complete.

Examples of locally trivial real polarizations are furnished by the Schrodinger
representation, in which X is identified with the cotangent bundle space T*Y
of the configuration manifold Y, and by quantization of a one-dimensional
harmonic oscillator in the representation in which the Hamiltonian is diagonal
(Simms, 1973). Moreover, it has been shown by Rawnsley (unpublished) that
quantization of a one-dimensional harmonic oscillator in the polarization given
by rays starting at the origin gives the wrong energy spectrum,; this polarization
is not complete. The condition that a locally trivial real polarization should be
complete is related to the Pukansky condition in Auslander and Kostant (1971).

A Euclidean cylinder is the quotient space of R” by a properly discontinuous
subgroup G of R” generated by a set (u, . . ., uy) of linearly independent
vectors in R”. The canonical metric in R” induces in R"*/G a flat Riemannian
metric.

Lemma 2.1. Each leaf of a complete locally trivial real polarization is
diffeomorphic to a Euclidean cylinder.

Proof. The proof is based on results in Auslander & Markus (1955) and
Kobayashi & Nomizu (1963, Chap. V). Each leaf Q of a complete locally trivial
polarization has a complete flat affine connection defined by absolute parailelism.
Hence the universal covering space of Q is isomorphic to R”. Introducing a
Riemannian metric in Q such that the basic parallel vector fields £;1Q, .. ., €410
are orthonormal, and choosing a base point x € @, induces in Q a structure of
an Abelian group with an invariant flat metric such that the covering map R" -
Q is a group homomorphism. Hence, 0 = R" /G, where G is a subgroup of R”
generated by k <n linearly independent vectors in R”.

Lemma 2.2. Let F be a complete locally trivial real polarization of

(X, w) and R*/G a Euclidean cylinder diffeomorphic to a typical ieaf

of F. For each y € Y, there exist a neighborhood U of y and a trivial-
ization ¢: n~1(U) > U x R?/G such that, for each leaf Q of F contained
in n~1(U), the induced diffeomorphism g : @ -~ R"/G is an isomorphism
of manifolds with absolute parallelism.

Proof. Let U be a coordinate neighborhood of y in Y such that =1 (U) is
trivial and £4, . . ., £, the Hamiltonian vector fields on n~1(U) defined by the
coordinate functions on U, Since n~! (U) is trivial there exists a section s: U~
X of . For each leaf Q in n71(U), the section s defines a base point in .
Introducing in Q a flat Riemannian metric such that £4Q, . . ., &,|Q are ortho-
normal vector fields defines in Q a structure of an Abelian group and an iso-
morphism of Lie groups gy : @ > R” /G. The isomorphism ¢, maps the vector
fields £110Q, . . ., £, 1Q to the parallel vector fields on R”/G defined by the co-
ordinate directions in R". Hence, gy is an isomorphism of manifolds with
absolute parallelism. Moreover, the isomorphism ¢, is uniquely determined
by the base point s(U) N Q and the restriction to Q of the vector fields &y, . . .,
£,. Therefore, the map w: 71 (U) - U x R"/G given by ¢(x) = (n(x), vo(x)),
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where Q is the integral manifold of F through x, is well defined, and itisa
smooth trivialization satisfying the conditions of the Lemma.

The fundamental group of a Euclidean cylinder R” /G is isomorphic to G,
which is a free Abelian group of rank k <n. Therefore, for each leaf Q of F
and each x € Q, the fundamental group of @ with base point x is a free Abelian
group of rank k. For any x, x" € 0, there is a natural isomorphism of funda-
mental groups of Q with base points x and x', respectively. We shall use these
isomorphisms to identify fundamental groups of Q with different base points
and denote by (@) the fundamental group of Q obtained by this identification.
For any diffeomorphism ¢ : @ = R"/G the induced isomorphism of the funda-
mental groups will be denoted by ¢y« : 7,(Q) = G.

Theorem 2.1. Let p: 7! (l% - R"/G be a trivialization of 7 satisfying
the conditions of Lemma 2.2. For each u € G, there exists a vec-

tor field {, in F/n~1(U) such that, for each x € n~1(U), the inte-
gral curve ¢ : [0, 1] > X of ¢, originatingat x isa closed loop in the leaf
Q of F passing through x representing the element gg+ () in 7,(Q).

The collection of local vector fields on X defined in thls way spans an
involutive distribution K contained in F of dimension k equal to the
rank of the fundamental group of a typical integral manifold of F.
There is a canonically defined density x on K.

Proof. Let §, be a vector field on U x R”/G defined by &,(y, p) = (0, u) for
each (¥, p) € U x R*/G. For anyintegral curve ¢: [0,1] - U x R"/G of {,,, the
projection of ¢ to Ulis a constant curve in U/ while the projection of ¢ to R* /G
is a closed curve representing the element u of the fundamental group of R?/G.
Since ¢: ()= U x R*/G is a diffeomorphism such that, for each leaf 0
of Fin n71(U), it induces an isomorphism ¢p: @~ R"/G of manifolds with
absolute parallelism, the vector field ¢, on n~1(U), defined by ¢,(x) =
To™' (§((x))) satisfies the conditions of the Theorem. Further, the vector
fields {y,, . . -, $y, cormresponding to the generators of G span a k-dimensional
involutive distribution on (V) contained in F|n~"1(U). A different choice
of trivializations of 1 (U) satlsfymg the conditions of Lemma 2.2 leads to
another k-tuple (§u R §uk) of linearly independent vector fields in F|n~1(1)
which differs from (§u s+ $uy) by multiplication by a matrix with determi-
nant 1. Therefore, local vector f1elds corresponding in this way to elements of
G define a k-dimensional involutive distribution K on X contained in F, and a
density k on K.

3. Complex Line Bundle

Let L denote a complex line bundle over X with a connection V such that w
is the curvature form of V, and an invariant Hermitian form { | ). Such a line
bundle exists if and only if w defines an integral de Rham cohomology class;
for a detailed exposition of the theory of complex line bundles see Kostant
(1970). We denote by L, the bundle L minus the zero section. It is a principal
fiber bundle over X with the multiplicative group C, of nonzero complex’
numbers as the structure group. The line bundle L is a fiber bundle associated
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to L, with a typical fiber C on which Cy acts by multiplication. The connection
Vin L corresponds to the horizontal distribution in L. Any piecewise smooth
curve in X can be lifted to a horizontal curve in L. Any loopc: 10,1} - X
defines a unique complex number oz (¢) € C such that, for each horizontal
lift & [0, 1} = L of ¢, (1) = a7 (¢)&(0). The function o, from the space of all
loops in X to Cy is called the scalar parallel transport function of the connection
in L. It satisfies the following conditions:

1. lag(c)i=1 for each loop ¢ in X.

2. If ¢, is homotopic to ¢, and Z is a surface of deformation of ¢, to

¢y, then

ap(c)= exp( —2mi f w) ay(c,)
b
3. If (1) = c,(0), then ay (cy ca) =ap(cy)ay (c;), where ¢q cy() =
() for0<t<}andc, c,(t)=c,(2t — 1) for 5 <r<1.

Let Q be a leaf of F. Since w|Q =0, L, |Q has a flat connection, and the
restriction of ¢, to loops in Q depends only on the homotopy classes of loops
in Q. This defines a homomorphism ¢y, o: 71 (Q) - Cy from the fundamental
group of @ to the group C,.

4. Metalinear Structures

Let BF denote the bundle of ordered bases of F. It is a GL(n, R) principal
fiber bundle over X. Let ML(n, C) denote the double covering of GL(n, C).
Since GL{n, R) is a subgroup of GL(n, C) the inverse image of GL{n, R) under
the covering map §: ML(n, C) - GL(n, C) is a subgroup ML(n, R) of ML(n, )
calied the real n x » metalinear group.

Let %: ML(n, C) - C be the unique holomorphic square root of the complex
character Det o § of ML(n, C) such that %(1) = 1. We shall denote by p: ML(n, R)
- GL(n, R) the map induced by the covering map g, and by x: ML(n,R) = C
the restriction of ¥ to ML{(n, R). A metalinear frame bundle for F is a principal
ML(n, R) fiber bundle BF over X together with a map 7: BF —~ BF such that
the following diagram commutes:

BF xML(n, R) — BF
e
BF x GL(n, R) — BF

where the horizontal arrows denote the group actions. For each leaf Q of F,
the restrictions of BF and BF to Q are principal fiber bundles with canonically
defined flat connections (Sniatycki, 1975).

Let NV be the fiber bundle over X associated to BF with standard fiber C on
which ML(n, R) acts by multiplication by x(a). For each w € X, an element
v, €N, isa map from BF, to Csuch that v..(ba) = x(a)v,(b), for all b € BF,
and a EML(n R). The Hermman dual of N is a fiber bundle N'T over X associa-
ted to BF with standard fiber C on which ML(n, R) acts by multiplication by
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X(@)~!. For each ji,, € NI, b € BFy, and a € ML(n,R), i1 (b) = X(@)u(ba).
The bundle N7 is called a bundle of half-forms relative to F. For each x € X,
there is a sesqulinear map ¢ -|* }: Ni x Ny, = Csuch that iy |v,) = u (B)ry(b)
for any b € BF,.

For each integral manifold Q of F the restriction of BF to Q has a canonically
defined flat connection. This defines flat connections in &'T |Q and N|Q. There-
fore, we can differentiate covariantly sections of N or N in direction of vector
fields in 7. This covariant differentiation in direction of vector fields in F satisfies
all the rules of genuine covariant differentiation. For any section u of N'T and
v of N and any vector field £ in F, we have &({uiv)) ={Vulv) + (uVp).

Since, for each leaf Q of F, the connection in N|Q is flat, the parallel trans-
part in N'|Q defines a homomorphism oy o: 71(Q) > Cy.

Lemma 4.1. For each leaf Q of a complete locally trivial real polarization
F, ano(m1(Q)) C {1, — 1}. For any trivialization ¢: n™2(U) > U x
R"|Gof nand any u € G, ay, Q(goél*(u)) is independent of Q in n~!(0).

Proof. Since BF|Q is a trivial bundle, there is a subbundle B"F|Q of BF|Q
such that the inclusion map B*F|Q -» BF'|Q gives a reduction of ML(n, R) to the
kernel of the covering map p: ML(n, R) - GL(n, R). Moreover, the connection
in BF|Q reduces to a connection in B"F|Q. Hence, the holonomy groups of
BF|Q and B"F|Q coincide and they are subgroups of Ker p. Parallel transport
in N1Q defines a subgroup ay) o(m1(Q)) of Cy homomorphic to a subgroup of
Ker p. Since p is a double covering, Ker p is isomorphic to Z, (the additive
group of integers modulo 2), and therefore, ay| o{m1(@)) C {1, —1}.

For any trivialization ¢: n71(U) - U x R"/G and any u € G, the map g: U~
{1, —1} defined by g(¥) = oy ¢ («péi (), where Q = n~1(y) is continuous.
Therefore g is constant, which proves the second part of the Lemma.

Similarly, for each leaf Q of F, the connection in NT|Q is flat, the parallel
transport in N1 |Q defines a homomorphism from 7{(Q) to Cy, and the image
of this homomorphism is contained in {1, —1}. Since, for each 2 € Ker p,

x(@) = x(a)™!, it follows that the homomorphism from m,(Q) to C,, induced by
paralle] transport in N7 |Q is the same as the homomorphism oy o induced by
the parallel transport in N|Q.

5. Wave Functions

The connection V in the line bundle L and covariant differentiation of
sections of V in direction of vector fields in F give rise to covariant differen-
tiation of sections of L &N in direction of vector fields in F. For each section
Aof L and each section v of N, A® is a section of LQN and V:A®v) =
(Ve ®v + A@V;w for all vector fields ¢ in F. Let D(L ® V) denote the space
of C™ sections of L @ N with compact supports, endowed with the standard
topology, and D'(L® N) the space of continuous linear functionals on DL N).
Elements of D'(L®N) are called generalized sections of L& N'T. The value of a
generalized section { on a section ¢ € D(L®N) is denoted by (¢, ¢). For each
generalized section ¥ of LQ N1 and each vector field £ in F, the covariant derivative
of Y in direction £ is a generalized section V. of LQ N'T defined by Ve, 00=
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— (Y, V0), for all 0 ED(LR N). A generalized section  of LQNT is covariant
constant along F'if, for each Hamiltonian vector field £ in F,V ¢ = 0. Generalized
sections of L@ NT covariant constant along F represent the quantum states of
the physical system described by the classical phase space (X, w), and they are
called wave functions of the system in the representation given by the polariza-
tion F.

For each integral manifold Q of F the restriction of L&N to Q has a flat
connection induced by the flat connection in L |Q and the canonical flat con-
nection in NV|Q. The parallel transport of elements of L& N along loops in @
defines a homomorphism ag: 7;(Q) = Cy such that, for each y € 7,(Q), ap(y) =
ary Q(’Y)G’NI Q('}')~

Theorem 5.1. If F is a complete locally trivial real polarization, then:

1. The supports of generalized sections of LQNT covariant constant
along F are contained in the subset S of X consisting of all leaves
Q of F for which the homomorphism ag: 7;(Q) > C, is trivial.

2. The projection Z of §'to Y, Z =1(S), is a submanifold of ¥ of
codimension k equal to the rank of the fundamental group of a
typical integral manifold of F.

3. Sisa submanifold of X of codimension k, the characteristic distri-
bution of w|S coincides with the restriction to S of the distribution
K defined in Theorem 2.1, that is

KIS={veTSv_iw|S=0}

and there is a canonically defined density & on §. For any Hamil-
tonian vector field £ in F, the restriction of & to S leaves § invariant.

Proof. 1. Let Qg be a leaf of F such that ag, is not trivial. This means that
there exists y €7, (Q,) satisfying ag,(v) # 1. By Theorem 2.1 there exists an
open neighborhood n 71 (1) of Qg and a vector field ¢ on 3~ 1{U) such that all
integral curves c: [0, 1] = #71(U) of { are closed, and the homotopy class
[co] of any integral curve ¢: [0, 1] = Qg of ¢ is equal to y. Without loss of
generality we may assume that ag([c]) # 1 for all @ in n~* (U) and all inte-
gral curves¢: [0, 1] > Q of ¢.

Let ¢ be a generalized section of LQNT covariant constant along F. We want
to show that n~1(U) N support ¢ = §. Let ¢ be any smooth section of LN
with support contained in 71 (U). For each ¢ € [0, 1], we denote by o, the
section of L& N obtained from o by the parallel transport along the integral
curves of {, corresponding to the change of the parameters on these curves by
the amount z. Since ¢ is covariant constant along Fand ¢ isin F,

0=AVey, 0, = —P, Vo) = —(d/dt) Y, op)

Hence, {{, 0,) is independent of 7, and (Y, 6, )= (Y, g,). However, for each

x €71 (U), 01(x) = ag ([ex])oo(x), where Q, is the leaf of F through x and
¢yl [0, 1] = Q, is the integral curve of ¢ originating at x. The function /-
771(U) > Cy defined by flx) = ap_([cx]) is smooth and f{x) # 1 for all x €

1 YU). Therefore, for each smooth section ¢ of L& N with support in 77 1(U),
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we have (Y, (f — 1)o) =0, which implies that {({/, o) = 0 for all smoothsections
o of LQ N with supports in 7 1{U). Hence, support ¢ N~ 1{U)= @ which
implies that support ¢ is contained in the subset S of X consisting of all leaves
Q of F for which ag is trivial.

2. Let ¢: n~ 1 (U) - U x R"[G be a trivialization of 7 satisfying the conditions
of Lemma 2.2 uy, . . ., ug the generators of G,and {u, , . . ., $uy the corre-
sponding vector fields on n71(U) defined in Theorem 2.1. For each j =
L. Lk} W )= Cyisa differentiable function of modulus 1 defined by
fi(x) = ag (I¢jx]), where Q, is the leaf of F'throughx and ¢ [0, 1] = Qy is
the integral curve of ¢ uj originating at x. Each of the functions f; factors through
the projection n, f; = g; 0 n, where g;: U~ C,, are smooth and |g;| =1, forall
/=1, ..., k. The set Z M Us characterized by the conditions g;(y) = 1 for all
j=1,...,kandally €Zn U It suffices to show that the functions g, . . .,
gy are independent in U or, equivalently, that the functions fy, .. ., fy are
independent. Let ¢: [0, 7] = U, r >0, be a smooth curve in U. For each loop
¢jx, where n(x) = c(0), we have a homotopy &;: [0, 7] x [0, 1] »771(D)
defined by #;(s, t) = ¢ 1 (c(s), pr, 0 @ 0 ¢j,(¢)) joining the loop ¢;, to the loop
¢jx' where x' = 071 (c(r), pry 0 (x)). Therefore, we have

gi(c()) — gi(cO) = ap (lejx']) — e, ([ejx])
T evigx(lexDapig lex]) — anig Ueix Doz 1o (e )
=y, (e DIag o (leix]) —apip, (leix])]

=ayig, (leix]) exp (~2m’ f w>

[mhj

r 1
= a0, ([¢jx]) exp [—~2m’ f ds f deh*(w)(1,0), (0, 1))
0 0

Hence,
1
%gj 0 c(r) lp=o = —2mi f drhi*(wX(1, 0), (0, ) ay g, ([ex])
0

= —2mico(v, g‘uj(x))aNle([cjx] )

where v is any vector in 7, X projecting to the tangent vector to ¢ at ¢(0).
Therefore, §‘uj(x)__}w = {2mianig, ([e 1)} 1df;, foreachj=1,.. k.

Since the vector fields $u,» - - § uy, are independent and ¢ is nonsingular, it
foliows that the functions f3, . . ., f3 are independent. This implies that Z is a
submanifold of Y of codimension k.

3. Since § = n~1(Z), it is clearly a submanifold of X of codimension %.
Therefore, the characteristic distribution of w|S is at most k-dimensional. For
eachj=1,.. ,k, f(x)=1 for all x €S. Hence, v(f;) = 0 for all v € TS, which
implies that ($,,,_1w)|S = 0. Therefore, the distribution K |S N 71 (U) spanned
by {u IS, .- u |15 is contained in the characteristic distribution of w|S$. But
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dim K|S =k, and so K|S coincides with the characteristic dlstnbutlon of wiS.
Finally, let ¥ be an open subset of n ™ () and &4, . . ., {4k 21, e ek
Hamiltonian vector fields on ¥ such that (§‘u R §u SEls e g k) spans
FlV (§u1 . 7§uk751:' . =§k7‘§13" :Ek)lSspansT(fS'ﬂ V) and w(ém ES)*
8,¢ and w(és, $u ) Qforr,s=1,..,n—k,j= ., k. The density § is the
unique density which associates to the frame ﬁeld (i‘u RPN (S STRER
£, - Ek)lS in S number 1. This condition defines 5 since any other frame
in T(S N V) satisfying the same condition is related to the frame above by a
matrix

Ay Ay Az
4={0  4,, 43 )€GLn 1, R)
0 0 Ass

where [Det 4;1=1 andAzzA = 1, Therefore [Det A | = lDetAul IDetAnl
|Det A331=1. Further the frame field (§y,» - - o Sug” E15 - - o Enks E1r v v o Eneie)
is left invariant by any Hamiltonian vector ﬁeld é on V with values in F. Therefore
the density & is left invariant by£1S.

6. Scalar Product

Let H, be the space of sections ¥ of (LQNT)|S such that, for each leaf Q of
F contained in S, ¢ {( is covariant constant, and the projection to Z of the
support of ¢ is compact.

Proposition 6.1.

1. dim Hy > 0.

2. There is a canonical inclusion of Hy into D'(L®N) such that
elements of Hy are generalized sections of LN T covariant constant
along F.

3. There is a canonically defined pre-Hilbert structure (-|-) in Hy.

Proof. 1. Since n: X = Y is locally trivial, there exists a local sections: U~
X of n such that U is contractible and U N Z # 0. Then, s(U) is contractible and
there exists a nowhere vanishing section § of (LQNT)1s(U). Let ¢ be the
section of (L NS over n71(U N Z) obtained from ¥ by parallel transport
along leaves of F contained in n~1(U N Z). Let f be a smooth function on Z
with a compact nonempty support in U N Z. Then, the local section x - f(n{x))
Y¢(x) defined over n~1(U N Z) extends to a global section ¢: § —» (LN T)IS,
which is not identically zero and belongs to H,. Hence dim H, > 0.

2. For any ¢ € Hy and any 0 € D(L @N) there is a complex function (¢ |6}
oh § defined as follows. For each x €8, ¢(x) = A, ® u, and o(x) A ® vy,
where \, N, €L, 4, ENJ and v, €N,.. Then (xl/(x)lo(x)) ™ }(,uxivx>
where (7\;C [\ is the Hermitian form in L evaluated on A} and A, and {u,|v,)
is the value on (u,, v, ) of the sesqulinear map {-|*): N} x N,, - C defined in
Sec. 4. Clearly, this definition of {{/(x)]o(x)) is independent of the tensor pro-
duct decomposition of Y{x) and o(x). Further, for each vector field £ in F, we
have £ (Y |0) ={Y |V;0). Bach ¢ € H,, defines a map (y, -): D(L ®N) — C given
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by (¢, o) =Jg{¥|o) &, where § is the density on § defined in Theorem 5.1. The
map Y, -} is linear and continuous, and (y, 6) = 0 for all ¢ only if ¥ = 0. There-
fore, the association  + {{, *) gives-an imbedding of H, into D'(L®N).
Moreover, for each Hamiltonian vector field £ in F,

W,V = [ (Wi = [ &(wlons =0
S N

since & preserves 8§ and o has compact support. Therefore, if we identify H,,
with its image in D'(L® ) under the map ¥+ {y, .}, each ¥ € H,, is a general-
ized section of L& N'T covariant constant along F. _

3. Let ¥4 and Y/, be elements of Hy. We shall define a density ¢, - Y, on Z,
dependening linearly on ¥, and antilinearly on y, and define the scalar pro-
duct in Hy by (Y1 1) = [z ¥y - ¥5. Let y be any point in Z, and let (&, . . .,
Wy-x) be a basis in T),Z. For any x € ™1 (y) there exists a basis in T, X (¥,

e g, Vs e o o Vol Wes ooy Wy Uy, -« oy T ) in T X such that (T, . . ., ug)
isabasisin K, (i, ..., #)=1,(Uy, .., Ug vy, - - Vy_p)isa basisin Fy,
Tn(w,) = W,, (i, ) = 5,], ¥y, Ws) ars, w(uza W) = wlv,, t;) =0, for i, j =
l,..,kandr,s=1, n-k. Let b € BF, be such that 7(b) = (tiy, . . ., U, v;,

Vn—k) If \bl(x) P\lx®}l1x and \,bz(x) ’A2x®{l2x, for some ?\lx: 7\2x
L and Mi1xs Moy EN;a we put d’l \DZ(WI: sey Wn—k) O\lxi)\zx “lxz )u2x(b)
Clearly, this definition is independent of the choice of b projecting to (fiy, . . .,
Ug, vy, . . . ¥y_z ) and the tensor product decomposition of ¥ {x) and ¢ ,(x).
Any other basis in T, X satisfying the same conditions will be related to the
one we have used by a matrix

Ay Aip Az 4ig
0 Ay Ayz Apg
0 0 4, 4, |ECLOLER)
0 0 0 A

where [Det 4,,1=1,4,,43, =1 andA22A33 =1,and (W}, . .., Wy_r) = (W,
v Wp_g)A33 isanew b351s in Ty Z. Therefore, an element 5’ EBFx projecting
onto the new basis in F, will be related to b by ¢ € ML(n, R) such that

A=

Ay Asn
p(a)~(0 A
Hence

Yy oWy, Wy )Aa3) = Uy Y (®, - W)
= Nyx o) 11BNt ()
= \px g x) U1 2 (B2 5 (ba)
=z lhax) 11 (B)ia(B) 1X(@) 1 72
= e M) B (D)t (B)| Det Ay - Det Ayl
=Y Ya(Wy, . ., Wy ) Det Ag;)

)EGL(n,R)
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and ;- ¥, transforms as a density under the change of basis in T',Z. Independence
from x €~ 1(y) follows from the fact that ¢, and ¢, are covariant constant on
n71(y). Let x' be any point in n~1(y) and c: [0, 1] - n71(y) a curve joining x
to x'. Along ¢ we can choose autoparallel sections A{, X, of L and u, u, of NT suct
that Y (c(6)) = N(c(@)) R ulc()),i=1,2,+ € [0, 1], and a horizontal lift & of ¢
to BF. Then (\{|Xy) iy (®)u, (@) is a constant function along c. Hence the defini-
tion of Y, - ¥, is independent of x in 771 (y). The scalar product (Y, [y,) =
fz ¥y ¥, is thus well defined; and it clearly satisfies all the required properties.

The completion H of the pre-Hilbert space H is the Hilbert space of wave
functions in the representation given by polarization F.
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